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ABSTRACT

Collective Intelligence (CI) is the ability of a group
to exhibit greater intelligence than its individual
members. Expressed by the common saying that
“two minds are better than one,” CI has been a
topic of interest for social psychology and the
information sciences. Computer mediation adds a
new element in the form of distributed networks
and group support systems. These facilitate highly
organized group activities that were all but
impossible before computer mediation. This paper
presents experimental findings on group problem
solving where a distributed software system
automatically integrates input from many humans.
In order to quantify Collective Intelligence, we
compare the performance of groups to individuals
when solving a mathematically formalized problem.
This study shows that groups can outperform
individuals on difficult but not easy problems,
though groups are slower to produce solutions. The
subjects are 57 university students. The task is the
8-Puzzle sliding tile game.

Keywords: collective intelligence, group problem
solving, computer supported cooperative work, group
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Introduction & Background

Collective Intelligence (CI) can be defined as the
ability of a group to produce better solutions to a
problem than group members could produce working
individually [1]. 

Many human institutions are based on the belief that
“two minds are better than one.” It’s the reason why
democracies hold popular elections, why organizations
use committees, and why business relies so much on
meetings. Historically, Collective Intelligence is the
motivation behind all forms of group problem
solving—since the birth of collaboration.

The Social Psychology literature offers a number of
empirical studies demonstrating the phenomenon of CI 

(e.g. [2], [3], [4], [5], [6]). Results in these studies
generally indicate that group solutions are at least as
good as the average quality of individuals’ solutions. 

For example, Yetton and Bottger [5] find group
solutions to be superior in quality to average individual 
solutions for multi-part judgment problems and equal
to the quality of the group’s best member. Johnson and 
Johnson [6] find group solutions to be equal to or better 
than the best member’s solutions when individual
decision making precedes group discussion.

With the advent of information technologies such as
local area networks, real-time digital communications
and distributed software, researchers began exploring
group problem solving in computerized network
environments. For example, considerable research has
been done on Computer Supported Cooperative Work
(CSCW) and its sub-field Group Decision Support
Systems (GDSS).

GDSSs combine communication, computer and
decision technologies to support problem formulation
and solution for groups [7]. In outlining their
foundation for GDSS research, DeSanctis and Gallupe
identify task type, group size and the presence or
absence of face-to-face interaction as key variables [7]. 
Much research has studied the effect of these factors on 
the performance of computer-mediated groups, many
comparing groups supported by computer to ones using 
traditional face-to-face methods (e.g. [8], [9], [10],
[11]).

However there has been a lack of research comparing
group to individual problem solving when computer-
based decision support systems are provided to both
[12]. In other words, though the CI phenomenon has
been established in the Social Psychology literature,
more work is needed to extend understanding into the
digital realm of Computer Science.

Though there have been attempts towards filling this
gap, the research to date has focused primarily on



business-relevant qualitative tasks such as
brainstorming [9], preference reconciliation [8] and
multi-part judgment problems [12].

To date, little research has been published addressing
whether CI occurs in computer-supported groups
solving highly-structured, formalized problems (e.g.
computer chess, Traveling Salesman). In contrast, well-
defined problem solving tasks have been a primary
area of research for Artificial Intelligence work on
multi-agent algorithms [13].

Since network environments of the future will likely
consist of both human and AI agents, it is important to
explore whether groups of humans exhibit the
phenomenon of CI when working on the types of
highly-structured tasks where AI problem solving
agents excel.

A better understanding of human performance on these
types of problem solving tasks is a first step towards
the study of problem solving by groups composed of
both human and non-human agents. 

This paper presents findings from an experimental
study of computer-mediated group problem solving
applied to a formalized task. 

First we define the specific goals of our study, how we 
chose to achieve them, and the research questions we
set out to answer.

Next, we enumerate our main hypotheses and describe
the experiment and software system we designed to test 
them.

This is followed by a report of results we obtained
during the experiment. We establish that the
phenomenon of CI applies to groups of humans solving 
highly structured tasks in a network environment.

Next we discuss some of the factors that affect the
degree of CI exhibited.

Finally, we consider the implications of this research
for future directions in the study of Collective
Intelligence.

Research Focus

The goal of this research project is to investigate CI
under well-defined laboratory conditions. Specifically,
we desire quantitative measures of performance. To
achieve this we take a novel approach to the study of
computer-mediated group problem solving.

By encapsulating the process within a formalized
software framework, all decision-making behavior can
be recorded by the system. This allows a more
rigorous, analytical model of human problem solving
than previously possible.

To establish the CI phenomenon within this
framework, we decided that a simple, mathematically
formalized problem would be most suitable. The main
benefit of this approach is that objective performance
metrics (e.g. of solution quality, thinking time) become
readily available that are absent from the study of other 
task types.

For example, solutions to a formalized maze problem
can be objectively rated by path length. On the other
hand, choosing which supplies would be “most useful”
for surviving on the moon cannot be objectively
measured—only compared to the opinions of experts
[5].

For our study we chose the well-known 8-Puzzle
sliding tile game. It fulfilled our need for a simple,
formalized problem for which the solution space is pre-
defined and for which mathematically objective
metrics exist for solution quality and problem
difficulty.

Implemented within our software framework, this
approach provides the following benefits:

� Decision-making is isolated apart from solution
generation

� Problem difficulty is objectively quantifiable
� Solution quality is objectively quantifiable
� Decision time is objectively quantifiable.

Solving this kind of formal problem is classified as an
“intellective task” according to McGrath’s model of
group task types [14]. It involves finding a correct
answer for which there exists an objective criterion of
correctness [7].

For computer-mediated groups, intellective decision
tasks can be efficiently solved with the exchange of
specific facts across a low-bandwidth communications
medium [15].

For groups attempting to collectively solve the 8-
Puzzle, each person need only make a series of choices
(votes) from a small set of alternatives. A system
supportive of this task would leave this as the only
cognitive burden on its users. All other needs, such as
problem representation, vote-aggregation, and decision
execution, would be met by the computer system. 



We consider this an “algorithmic” approach to group
problem solving.

Such a system would fall into the Level 3 class of
Group Decision Support Systems as defined by
DeSanctis and Gallupe [7]. They define a tri-leveled
taxonomy of GDSSs based on the degree of computer
involvement in decision-making processes. The higher
the level, the more dramatic the intervention into the
group’s natural (unsupported) decision process.

Level 3 systems impose deliberate communication
patterns onto the human decision-making process. For
example a Level 3 system might enforce the rules of
parliamentary procedure, or make possible the kind of
highly-structured decision-making our framework calls
for.

To this end we designed and implemented a distributed 
software system based around the 8-Puzzle. This
system, which we named Sliders, was created to
facilitate experimental data-gathering and answer the
following research questions:

• How does solution quality of computer-
mediated groups compare to individuals
supported by comparable software?

• How does group performance compare to the
average individual?

• How does group performance compare to the
best individual?

• How does solution time vary according to
similar comparisons?

• If differences in solution quality and/or time
are exhibited, which experimental variables
correlate to the difference?

• What effect does problem difficulty have on
group and/or individual solution quality?

Experiment Design

The following hypotheses were constructed based on
the findings of past investigations into CI (see
Introduction) and our own intuitions regarding the
research questions stated above.

Hypothesis 1a: Group solution quality is higher than
average individual solution quality at all difficulty
levels.

Hypothesis 1b: Group solution superiority over the
average individual is greater on hard problems than on
easy problems.

Hypothesis 2: Group solution quality is better than the 
best individual’s solution quality at all difficulty levels.

Hypothesis 3: Group solution time is greater than
average individual solution time at all difficulty levels.

To compare the performance of collaborative groups
with the performance of individual subjects, we used a
within subjects experimental design with two main
experimental conditions. 57 undergraduate and
graduate students were assigned to one of two groups.

In the first experimental group (the Group Condition),
subjects solved a series of 8-Puzzle problems working
together in a collaborative group. Under a 30-second
time constraint, each subject voted for his or her
favorite next move at each step of problem solving.
The software then executed the move which received
the most votes. Subjects played as many games as they
could successfully solve within a 30 minute time
period. Further, the sequence of problems was arranged 
so that each problem was slightly more difficult than
the previous problem. Thus, subjects solved problems
of increasing difficulty as the experiment progressed.

In the second experimental group (the Solo Condition), 
subjects solved a series of 8-puzzle problems that
increased in difficulty -- just as the Group Condition
did. However this time, the subjects worked alone.
That is, each member of the solo group chose his or her 
favorite next move at each stage of problem solving
and the software immediately made this next move.
Thus while the Group Condition performance reflected
the efforts of many individuals voting at each step, the
Solo Condition performance reflected individual
problem solving efforts.

The within subjects design meant that the same players
served in both experimental groups. Half of the players 
solved problems first in the Solo Condition and then
later in the Group Condition. Other players solved
problems first in the Group Condition and then later in
the Solo Condition. This counterbalanced design was
meant to control for possible learning as subjects
gained more experience solving the problem.

System Implementation

Sliders is a particular instantiation of the well-known
8-Puzzle tile sliding game. Along with its cousins the
15-puzzle and 24-puzzle, this problem is based on
simple rules yet proves very difficult in practice.
Because of its combinatorially large problem space, it
has for many years been used as a testbed for heuristic
search techniques [16]. The N*N extension of the 8-
Puzzle is known to be NP-hard [17].



The 8-Puzzle consists of a 3x3 grid of eight numbered
tiles from 1 to 8, and one empty slot. Given a
scrambled initial layout of tiles, the player must
rearrange the tiles into a goal configuration by sliding
tiles orthogonally into the current empty slot.

Figure 1: The Sliders client interface in its goal state.

For the goal state we adopt Korf’s [18] convention:
tiles are in numerically increasing order clockwise
around the grid, with the empty slot in the center (see
fig. 1). Degree of difficulty for a given initial state is
defined as the minimum (optimal) number of moves
required to reach the goal state. For instance, fig. 2
shows a difficulty 2 game state and fig. 3 is of
difficulty 8.

Figure 2: A Sliders board 2 moves from the goal.

Sliders is a client/server network application. A
centralized server contains a database that logs all the
behaviors of all participants. There are two operating
modes: a single-player mode (for the Solo Group
condition) and a group-player mode (for the Group
Condition).

In single-player mode, a player logs into the central
server. The server then sends a new unsolved puzzle
layout, and the user begins playing by selecting tiles
adjacent to the empty tile. The player has 30 seconds to 

make a move, as shown by a countdown timer. When a 
move is made, the board and move counter are
updated, and the timer is reset. If a move is not made
within the allotted time, the move counter is still
incremented and the timer is reset. After the user solves 
the puzzle, there is a five second delay before the
server gives a new puzzle of greater difficulty. The
player attempts to solve as many puzzles of increasing
difficulty over a 30 minute period.

Figure 3: A Sliders board 8 moves from the goal.

Figure 4: The Sliders Group client interface with 
feedback display showing vote statistics.

Group mode is similar to single-player mode except
that multiple players collaborate by voting on the next
move to make. Players are presented with a chart that
displays the amount of votes each tile has received
during that move round (see fig. 4). This feedback
mechanism allows group players to see the voting
behavior of their peers. Players are able to change their 
vote any number of times during the 30 second move
round. When all votes have been cast or 30 seconds
have elapsed, whichever comes first, the current voting
round ends. The tile with the most votes is the tile that



is moved and the next vote round proceeds with the
new game state. When the puzzle is returned to its goal
configuration, the server then repeats in the same
manner, waiting five seconds before giving a new
puzzle. The group attempts to solve as many puzzles as 
possible within the given 30 minute period. 

Experimental Results

This section presents the data obtained from our
experiment, organized around the hypotheses defined
above.

The dependent variables are solution quality (of the
Group Condition, average Solo Condition member and
best Solo Condition member) and time to solution (of
the Group Condition and average Solo Condition).

Solution quality for a given initial puzzle state is
measured against the known optimal distance to the
goal state. Data has been normalized, i.e. Solution
Quality = Actual Number of Moves – Known Optimal
Distance. Thus an optimal solution would score zero.

Time to solution is calculated as the number of seconds 
elapsed from the initial appearance of a puzzle to the
execution of its solving move.

Average and Best players are calculated by summing
up the amount of moves it takes every solo player to
complete puzzles at each difficulty level. Dividing by
the number of players yields the average. Choosing the
minimum identifies the best player.

In the tables that follow, problem difficulty is divided
into two categories: Easy (optimal distance 1-8) and
Hard (9-16).

Hypothesis 1a states that group solution quality is
higher than average individual solution quality at all
difficulty levels. Though the Group condition solves
problems in fewer moves overall than the Solo
condition, this difference is not statistically significant
(see table 1). Thus hypothesis 1a is rejected. 

Difficulty Avg. Solo Group
Easy 11.016 5.279
Hard 41.137 10.5

Overall 24.615 7.182

Table 1: Mean # of moves, Group x Avg. Individual x
Problem Difficulty.

Hypothesis 1b states that group solution quality should
exceed average individual solution quality to a greater
degree on hard problems than easy problems. When we 
examine only the most difficult problems, we find that
the group condition is better than the individual
condition (see table 1) to a statistically significant
degree (t = 3.1, p < .05). Thus hypothesis 1b is
accepted.

Difficulty Best Solo Group
Easy 4 4.7
Hard 13.833 10.078

Overall 8.538 7.182

Table 2: Mean # of moves, Group x Best Individual x
Problem Difficulty

Hypothesis 2 states that group solution quality is better 
than the best individual’s solution quality at all
difficulty levels. This hypothesis is rejected because
the performance difference over all levels is not
statistically significant (see table 2). The same is true
for easy and hard difficulty levels taken separately. 

Difficulty Avg. Solo Group
Easy 24.374 142.189

Hard 56.653 202.038

Overall 52.307 180.089

Table 3: Mean solution time in seconds, Group x Avg.
Individual x Problem Difficulty.

Hypothesis 3 states that group solution time is greater
than average individual solution time at all difficulty
levels. We find that the group condition takes more
time at every difficulty level than the individual
condition (see table 3). This finding is statistically
significant (t = 6.46, p < .05) so the hypothesis is
accepted.

Discussion

We defined Collective Intelligence as the ability of a
group to produce better solutions to a problem than
group members could produce working individually.
The intent of our experiment was to establish the
phenomenon of CI in a formalized problem domain. 

Our most significant finding is that CI can be exhibited 
by groups of humans solving highly structured
intellective tasks in a network environment.
Specifically, our experimental results show that group



solution quality is significantly greater than the average 
individual solution quality when solving hard problems
but not when solving easier problems.

While in general the group outperforms the average
individual on the easier difficulty levels, the difference
is statistically significant only for the harder problems.

Interestingly, our findings also indicate little difference
between group solution quality and the best
individual’s solution quality—for all difficulty levels.
This result is especially noteworthy with respect to
Gallupe’s [12] finding that GDSS-supported groups are 
significantly outperformed by their best individuals.
Since Gallupe’s study used a multi-part judgment task,
the possibility is raised that task type is a factor
determining the relative performance of a group and its
best individual.

As expected, group solution time is significantly
greater than the average individual solution time for all 
difficulty levels.

Several possible explanations could account for these
findings:

One social psychological explanation for CI comes
from the interactional theory of group decision-making.
This posits that groups perform better than individuals
because greater resources are available to each group
member, thus motivating performance, creativity and
error-correction [2]. In our computer-based experiment, 
group interaction occurs via the voting statistics
feedback display. Cognitive feedback in GDSSs has
been shown to be an effective mechanism for
facilitating convergence among group members [19].
We plan to compare feedback versus no-feedback in a
future experiment.

Another explanation raised in our post-experiment
analysis is that constraints imposed by our system may
influence group solution time. Because the time spent
at each decision point is the time spent by the slowest
individual (or the 30 second limit, whichever is less)
there are times when faster group members are left
waiting for slower members to make a decision. In
contrast, individuals working alone never have to wait
before moving to the next decision point. Thus the
group could potentially move much quicker if different
constraints are imposed by the system (e.g. executing a
decision when a majority of members have made a
decision instead of all members).

This factor may also influence group solution quality
due to the forced introduction of additional thinking
time into the problem solving process.

Our last explanation for CI derives from AI research
into multi-agent problem solving. Agent-based
algorithms modeled on the group behavior of social
insects have been highly successful when applied to
such problems as task allocation [20] and shortest path
optimization [21]. These insects exemplify the CI
property by exhibiting a sophisticated, emergent
intelligence out of a large group of relatively
unintelligent, autonomous individuals.

For example, ants foraging for food leave a pheromone 
trail which other ants can detect and, depending on
how thick the deposit is, follow. Over time, the more
popular paths are reinforced and gain a stronger
pheromone scent while the unpopular paths slowly lose 
their scent. Thus the network of trails becomes a shared 
statistical indicator of the group’s overall behavior—
just like the voting graph feedback in the Sliders
interface.

Ant Algorithms have been shown to be extremely
effective on combinatorial optimization problems such
as the Traveling Salesman Problem and Graph-
Coloring Problem [21].

Perhaps future extensions of the present research will
discover a new class of well-defined Human
Algorithms that exemplify the CI property.

Moreover, since future network environments will
likely incorporate both human and non-human
intelligence, it is important to investigate human
problem solving within the kind of highly structured
domain where non-human agents currently excel. 

Formalized problem solving systems like Sliders create 
a common ground for human and artificial intelligence. 
This branch of research is a first step towards
ultimately investigating how groups composed of both
human and non-human agents might collaborate
together most effectively.

Conclusion

This research contributes to the body of literature
comparing group versus individual problem solving
and attempts to elucidate the factors which combine to
exhibit the Collective Intelligence phenomenon. It also
furthers understanding of Group Decision Support
Systems when applied to intellective tasks and
highlights issues of computer-mediation that may
affect group decision quality and time. 

Given the limited scope and lack of antecedents to this
research, more extensive studies and laboratory testing
with different decision support systems are needed



before computer-mediated group problem solving of
highly structured tasks is fully understood. We hope
future researchers will replicate our findings and
further current understanding of Collective
Intelligence.
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